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Introduction

Over time, neglected structures and land in communities 
degrade into unusable or unsafe infrastructure. This process 
adversely affects public health and welfare and can increase 
crime and lower property values. To protect and support 
growth in communities, local jurisdictions try to identify 
these vacant, abandoned, and deteriorated (VAD) proper-
ties. However, identifying VAD properties, that is, recording 
their location, is not a simple task: there is no national data-
base nor a standardized definition with which to detect VAD 
properties, and as such, cities typically rely on block-by-
block field surveys to count VAD properties (Mallach 2018). 
Often, housing planners drive around the neighborhoods to 
visually identify and record these properties, or they rely on 
calls from neighbors to the civic hotline to report problems 
with properties in their communities.1 Some cities have used 
techniques such as spatial decision support systems (SDSSs) 
and machine learning (ML) models to find VAD properties 
(Appel et al., 2014; Hillier et al., 2003; Hillenbrand 2016; 
Reyes et al., 2016) but reports of these efforts emphasize the 
technology itself rather than the combination of human, 
technology, and data. Minimizing or ignoring the human 
aspect of these decision-making statistical models is danger-
ous because the models can provide suggestions that could 

counter a practitioner’s commonsense or what is known to 
be helpful for a community.

Accordingly, this research has two objectives. The first 
objective is to design a workflow that integrates human 
expertise into a ML model to efficiently identify VAD prop-
erties from a dataset of parcels with parcel attributes. The 
outcome of this objective is a human-in-the-loop machine 
learning (HITLML) model that we call VADecide. The sec-
ond objective is to measure how VADecide improves or does 
not improve upon (1) a simple, classic ML model using 
existing datasets (i.e., the “ML model” in this paper) and (2) 
the city’s current workflow based on their expert knowl-
edge. An improved model will be more efficient (requiring 
fewer training samples and giving more predictions), more 
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accurate (yielding a higher prediction accuracy rate), more 
reliable (recalling a similar set of properties that were previ-
ously discovered using field surveys and U.S. Post Office 
[USPS] vacancy records), and more robust (capturing all 
features of VAD properties).

To meet these research objectives, we partnered with the 
City of Savannah, Georgia, in collaboration with four hous-
ing officials from Savannah’s Housing and Neighborhood 
Services Department (HNSD) and the Chatham County/
City of Savannah Land Bank Authority (LBA). The city 
government acquires a few dozen VAD properties per year 
for redevelopment as affordable housing through tax sales, 
declaration of public nuisance, or eminent domain. To help 
identify VAD properties, we built a model that inputs a set 
of parcels (i.e., properties) and outputs a label for each as 
“VAD” or “not VAD.” In the model, each parcel is associ-
ated with attributes, such as code violations, tax, and crime, 
which were collected using census and municipal data 
records. To help integrate the “human factor,” four housing 
officials labeled properties by hand in a spreadsheet. The 
model was trained on these three hundred training samples 
and returns 1,309 predicted VAD properties. We found that 
VADecide is more efficient and scalable than the classic ML 
model and the city’s current workflow. Compared with the 
ML model, the improved model has a similar model predic-
tion accuracy yet is more reliable (i.e., it has higher agree-
ment rates) when validated with VADs identified through 
field surveys and USPS vacancy data. The ML model yields 
a high percentage of VADs with code violations, as it is 
trained on VADs identified by code violations alone, 
whereas the properties classified as VADs in VADecide 
have a wider range of “telling” variables (e.g., tax, code, 
crime). Compared with the city’s workflow, the HITLML 
approach identifies more VAD candidates distributed across 
more neighborhoods, which helps reduce confirmation bias 
from city planners. The model also associated VAD proper-
ties with higher tax delinquency and crime, whereas the 
city’s workflow tends to associate VADs with code viola-
tions, which are often manifested as visual features that 
housing workers see when they visit the neighborhoods.

As such, the contribution of this work is the use of a 
HITLML model to identify more VAD candidates in diverse 
neighborhoods, which can help experts create plans for iden-
tified parcels and preempt deterioration that adversely affects 
neighborhoods and residents. The method engages planning 
experts, and its development unearthed subjectivity in the 
labeling process (for instance, we found that in some cases, 
two experts labeled the same property differently). By exam-
ining the model’s decision process a posteriori, the experts 
learned more about their process. While VADecide’s results 
may not be generalizable to all communities, other planners 
and researchers may benefit from the lessons learned in this 
case study, and from the academic-practitioner collaboration 
that integrates technology with professional knowledge.

Our article proceeds as follows: We review literature on 
the topics of vacant, abandoned, and deteriorated properties 
and spatial technologies. We next describe the Savannah, 
Georgia case study and details on training VADecide. We 
then show the results of VADecide, compared with the ML 
model and the city’s current workflow, and discuss how 
HITLML aids the city’s planning decision-making process.

Literature Review

Blighted and VAD Properties

Certain properties in our communities often exhibit prob-
lems that give them the distinction as “blighted” properties. 
Such issues include tax delinquency, prolonged vacancy, 
structural defects, features that are health hazards (e.g., 
asbestos, lead paint, or exposed wood shards), overgrowth in 
vegetation, missing utility infrastructure (e.g., pipes or venti-
lation systems), and may be subject to flooding (see Luce 
2000). The term blight is often used as a legal basis for cities 
to acquire properties through condemnation (e.g., eminent 
domain) (Gold and Sagalyn 2010). However, this term has 
been criticized as a stigmatizing term for properties and their 
neighborhoods (Mallach 2018), and therefore, we use the 
distinction of VAD properties to refer to those that exhibit 
physical deterioration and neglect (Brachman 2005; Center 
for Community Progress 2023).

To our knowledge, there is no known universal definition 
of VAD (or blighted) properties, and definitions may be tai-
lored to a specific need, such as raising awareness for sub-
standard low-income housing, revitalizing downtown 
through eminent domain, or revealing the impacts of mort-
gage crises (Schilling and Pinzon 2016). VAD properties 
may have lower property values compared with those in the 
same block, as found in research comparing the sales price of 
foreclosure properties and the neighboring occupied units 
(Sumell 2009; Whitaker and Fitzpatrick 2013). Yet in prac-
tice, property value can be slow to update and vary signifi-
cantly based on property attributes and thus not a stable 
indicator for VADs. Therefore, the definition of VAD must 
be examined in a local, operational context (see our defini-
tion in the Case Study section) and the interactions between 
VAD characteristics should be considered when distinguish-
ing VAD properties from other properties.

Causes and Impacts of VAD Properties

A property can deteriorate due to macroeconomic and demo-
graphic shifts, a housing market failure, or neglect. In the 
United States, many legacy cities (i.e., post-industrial shrink-
ing cities) with sustained job and population loss over the past 
decade have struggled to support neighborhoods with con-
centrated vacancy (Mallach & Brachman 2013). In other cit-
ies, the impact of redlining, a race-based exclusionary housing 
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policy from the mid-20th century, continues to divert invest-
ment from predominantly African American neighborhoods 
and reinforce residential segregation (Rothstein 2017). The 
housing bubble burst in 2006 and 2007 also led to large-scale 
foreclosure on properties as the cost to maintain them (e.g., 
mortgages) exceeded their values (Mallach 2018). At the 
local level, VAD properties with unclear ownership status or 
delinquent taxes exceeding the value of the property can be 
characterized as zombie properties (Alexander 2015, 32), 
because they have high transaction costs and low property 
values.2

VAD properties can disproportionally affect marginalized 
communities’ local housing markets by decreasing neigh-
boring property values and impacting neighbors’ quality of 
life (Mallach 2018; Whitaker and Fitzpatrick 2013). Neigh-
borhoods with many VAD properties are associated with 
poor school quality (Sun et al. 2019), high crime rates 
(Branas, Rubin, and Guo 2012), higher male unemployment 
rate (Appel et al. 2014), and slower growth in property sales 
price (Gilreath 2013). These neighborhoods are also more 
likely to be home to low-income and African American 
households (Silverman et al. 2013; Sun et al. 2019) and  
suffer from declining home ownership and pessimistic per-
ceptions of neighborhood trajectories (Mallach 2021). Geo-
graphically, VAD properties also tend to cluster (Hillier et al. 
2003; Reyes et al. 2016; Weaver and Bagchi-Sen 2013), rein-
forcing the concentration of income, race, and housing mar-
ket inequality in marginalized communities and stunting 
economic mobility. VAD properties also cost millions of 
USD in lost tax revenue and unrecoverable costs of manag-
ing overgrown grass, litter, and illegal dumping; securing 
open structures; and demolition (Immergluck 2016; Mallach 
2018; Sumell 2009).

Spatial Decision Support Systems for Identifying 
and Managing VAD Properties

Early examples of identifying and managing VAD proper-
ties with large, digital, spatial datasets include the use of 
SDSSs. SDSSs combine spatial and aspatial data with ana-
lytical models and geovisualization to facilitate decision-
making in a spatial context (Armstrong, Densham, and 
Rushton 1986; Hopkins and Armstrong 1985). For example, 
the Philadelphia Neighborhood Information System inte-
grated housing information, web mapping, and logistic 
regression to identify likely abandoned properties (Hillier 
et al. 2003). Other SDSSs have detected VAD properties 
from historical records such as code violations or field sur-
veys. The City of New Orleans developed a decision support 
scorecard system using logistic regression to recommend 
that city officials sell (on the market or privately) or demol-
ish a property, based on local experts’ scoring of multiple 
criteria related to the property’s condition (Hillenbrand 
2016). A similar study in the City of Youngstown, Ohio, 

overlaid property characteristics such as vacancy rates and 
crime rates to create a combined index where properties that 
“scored” highest in these collective factors were prioritized 
for demolition (Morckel 2016). Others have used ML mod-
els such as random forest, decision tree, and gradient boost-
ing to detect VAD properties and discover how each factor 
contributes to the prediction (e.g., City of Syracuse in Appel 
et al. 2014; City of Cincinnati in Reyes et al. 2016). In these 
case studies, records were often limited to certain neighbor-
hoods. Similarly, the City of Savannah only has “labels” for 
a few dozen properties per year. These small sample sizes 
can deprecate the predictive quality of ML models, which 
typically require larger training datasets, posing a challenge 
to adopting ML models and SDSSs at the municipal level.

Most case studies are designed to involve planners before 
or after building the ML models (Hill et al. 2003; Appel et al. 
2014; Reyes et al. 2016; Hillenbrand 2016 is an exception), 
rather than consulting planners in tasks such as labeling 
training data and auditing the model’s decision mechanisms. 
As such, planners may be reluctant to adopt the technology 
due to a lack of trust in and understanding of the model’s 
innerworkings.

Human Engagement in Urban Artificial 
Intelligence

Traditional supervised ML processes involve training a 
model on big data that has been classified (e.g., whether a 
property is labeled as VAD) and iterating through multiple 
probability and statistical tests to predict classes for new data 
(e.g., properties with unknown VAD labels). In contrast, peo-
ple use HITLML to create new training data from small sam-
ples, audit the decision mechanisms behind the algorithms, 
and calibrate human practices (Holzinger 2016; Monarch 
2021; Zhou and Chen 2018). For instance, human experts 
can carefully examine the results of uncertainty sampling, 
which selects samples that are most uncertain for machine 
judgments, reflect on the causes of uncertainty, and then pro-
vide the appropriate labels (human judgments) to help the 
machine learn. Thus, HITLML is especially beneficial in 
scenarios where there is no large, reliable, labeled dataset 
and where the complexity of the subject matter necessitates a 
mutual learning dynamic between the humans and machines, 
rather than supervision or automation.

The human-in-the-loop approach is part of a rising urban 
artificial intelligence (AI) movement that outlines the power 
of technology to govern and serve as a voice for communities 
(Boehner and DiSalvo 2016; D’Ignazio and Klein 2020; 
Loukissas 2019). Technology can encourage civic participa-
tion in projects that range from authoritarian, with little public 
input, to citizen-controlled, in partnership with the public 
(Arnstein 1969; Cardullo and Kitchin 2019). Others argue that 
articulating issues, such as design goals, from different stake-
holders’ perspectives (Le Dantec 2016) and collaborating with 
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expert teams to build, quantify, ground-truth, share, and visu-
alize data (Williams 2020), facilitate the use of technology for 
public good. While these prior studies call for human-AI col-
laboration in urban planning, critical discussions around 
mechanisms and activities for effectively engaging planners 
and denizens with AI are still developing (Wilson 2022). There 
are also arguments in urban planning that advocate for a reori-
entation of technocratic planning toward communicative and 
collaborative traditions (Mattern 2021). Specifically, a grow-
ing number of studies have operationalized HITLML in urban 
planning: Zheng and Sieber (2022) applied the technique to 
topic modeling on the text of a corpus of grant proposals on 
the topic of smart cities, and Anwar (2022) followed suit for 
land cover mapping applications. Yet, there do not appear to 
be examples of the benefits of HITLML as applied to issues  
of housing.

Our research attempts to fill these gaps by proposing an 
explorative HITLML approach to elevate human presence in 
ML and evaluate the advantages and challenges of a HITLML 
approach in a planning context, especially for identifying 
VAD properties.

Case Study

The City of Savannah is a historic city (city pop 147,780 
[U.S. Census 2020]), a popular tourist destination, and home 
to the Savannah Port, one of the busiest seaports in the United 
States (International Trade Administration n.d.). Savannah is 
classified by the Lincoln Institute of Land Policy (n.d.) as a 
legacy city (i.e., a post-industrial shrinking city) whose pop-
ulation peaked in the 1960s.

The city of Savannah’s municipal code defines blighted 
property as one with two or more of the following condi-
tions, including unhabitable structure, inadequate utilities, 
safety hazards, environmental contamination, repeated ille-
gal activity, active code violations beyond one year, or crime 
or public health hazards to properties in immediate proxim-
ity (City of Savannah 2016). While this legal definition helps 
the city acquire such properties through eminent domain, 
few acquisitions used strategy and thus these cases do not 
adequately represent all aspects of VAD conditions that can 
be used for ML.

The city has a growing number of observed residential 
properties that show signs of deterioration and neglect, as 
measured through code violations and tax delinquency. In 
2019, 1,319 properties had code violations that indicate 
severe physical deterioration and 1,404 properties had at 
least three years of tax delinquent history. These properties 
tend to be in minority-concentrated neighborhoods with a 
sizable black population.

In 2019, Savannah allocated $10 million USD to repair 
and redevelop 1,000 properties into affordable housing 
over the subsequent ten years (called the “1K-in-10 initia-
tive”) in neighborhoods long neglected or exploited by 

profit-driven investors (Housing and Neighborhood 
Service n.d.). To meet this goal, planning experts from 
Savannah Housing and Neighborhood Service Department 
(HNSD) experimented with a data-driven approach in 
2018. They acquired spreadsheet data from civic depart-
ments, visually examined parcel information on an online 
platform, normalized and averaged the score of each par-
cel’s records in crime, tax, and code violations, and con-
ducted field surveys to validate vacancy on site. However, 
this process is time-consuming and labor-intensive. The 
data collected only capture a snapshot of conditions and 
the field surveys only cover a few neighborhoods. A trans-
parent, scalable, and sustainable VAD identification sys-
tem that also considers local context and interactions 
between variables could help mitigate these issues.

In Savannah, VAD properties have characteristics that are 
outlined in Savannah’s blight standards (City of Savannah 
2016) and that are likely to ease acquisition efforts (based on 
HNSD planners’ experiential knowledge) in the city’s 1K-in-
10 initiative. In the past, Savannah acquired only dozens of 
properties annually and thus lacks a large VAD dataset for 
traditional ML prediction. Therefore, we use HITLML work-
flow to label and audit a small subset of VAD candidates 
with HNSD planners, which enables VAD prediction on a 
larger set of properties.

Data

Independent variables used in the city’s current workflow are 
based on Savannah’s legal requirements for government 
acquisition. Such properties must have active code viola-
tions, crime (Part I and Part II types), or tax delinquency to 
qualify for tax (foreclosure) sales, nuisance abatement, or 
eminent domain. The two ML models include additional 
independent variables suggested by HNSD staff and theories 
of VAD characteristics (see specific variable definitions in 
Table 1 and variable nuances in Supplementary Material 
Section G).

VAD labels for properties identified in the city’s cur-
rent workflow come from a field survey: HNSD staff 
drove to a few low-income neighborhoods with many 
highly ranked VAD properties and rated properties based 
on visual cues aligned with legal blight criteria. In con-
trast, the ML model’s VAD labels are defined by active 
code violations, and VADecide’s VAD labels are defined 
by both data and human expertise (see more details in the 
next sections). To validate ML model and VADecide’s pre-
dictions, we use the city’s field survey and vacancy data 
collected by U.S. Post Service (USPS) (see Table 1 for 
details).

We acquired parcel-level data for the City of Savannah 
through our partnership with HNSD staff members. Crime 
and tax data include records from 2010 to 2019. Code vio-
lations data include entries from 2012 to 2019. In the two 
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Table 1. Independent, Dependent, and Validation Variables per Parcel in the City’s Current Workflow, the Simple ML Model, and 
VADecide.

Variable Year Description Source Used in

Independent variables
Crime 2010–2019 The number of crime incidents (Part I 

and Part II crime). It is weighted by 
recency and type in ML model and 
VADecide.

Police Department City’s workflow, 
VADecide, ML model

Drug crime 2010–2019 The number of drug crime incidents 
weighted by recency.

Police Department VADecide, ML model

Active code violation 2012–2019 The number of active code violations. 
It is weighted by recency and type in 
VADecide.

Code Compliance City’s workflow

Delinquent tax 2010–2019 Total amount of delinquent city 
and county tax and unpaid special 
assessment. The unit is USD. Due 
to collinearity, it is combined with 
delinquent year as one variable when 
calculating feature importance.

County Tax Office
City Tax Office
City Revenue Office

City’s workflow, 
VADecide, ML model

Total delinquent 
years

2010–2019 The number of years that the property 
has tax delinquency or unpaid special 
assessment. Due to collinearity, it is 
combined with delinquent amount as 
one variable when calculating feature 
importance.

County Tax Office
City Tax Office
City Revenue Office

VADecide, ML model

Unpaid special 
assessment tax Pct

2010–2019 The percentage of unpaid special 
assessment in total delinquent tax.

Derived VADecide, ML model

Property value 2019 Property values estimated by computer-
assisted mass appraisal. The unit is 
$1,000.

Savannah GIS Parcel 
Shapefile

VADecide, ML model

Dependent variables
VADs labeled by 

field survey
2019 Properties identified as VAD candidates 

in a 2019 field survey by human 
experts in selected neighborhoods.

Field Survey City’s workflow

VADs labeled 
by active code 
violations

2019 The number of active code 
violations under designated type 
“Condemnation,” “Vacant Property 
Clean/Mow,” “Unsafe Secure,” 
and “Unsafe Demolition” in code 
compliance database, which indicates 
VAD conditions.

Code Compliance ML model

VADs labeled by 
data + human 
expertise

2019 Properties identified as VAD candidates 
in the human-in-the-loop workflow by 
human experts based on independent 
(input) variables in the model and their 
experience.

Human experts VADecide

Validation/consensus variables
VADs labeled by 

field survey
2019 (repeated from above) Properties 

identified as VAD candidates in a 
2019 field survey by human experts in 
selected neighborhoods.

Field Survey VADecide, ML model

USPS vacancy 2021 Properties identified as vacant (not 
collecting their mail) by USPS staff for 
ninety days or longer.

USPS City’s workflow, 
VADecide, ML model

ML models, code violations and crime are defined as the 
weighted count of incidents: an incident is weighted higher 
if it is more recent and if the type particularly contributes to 

VAD (see Supplementary Material Section A for details). 
Property value was dated to 2019 and USPS vacancy data 
was acquired in 2021.
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Methods

A Simple Machine Learning Model

This article defines a “simple” ML model (also referred to 
as the “ML model”) as a supervised model with few or no 
expert interactions. We labeled VAD properties as those 
with certain code violations, such as vacant property, need 
for cleaning/mowing, unsafe demolition, and condemna-
tion. We removed code violation variables from the simple 
ML’s input features because we used code violation to con-
struct the VAD labels. Unlike VADecide, the ML model 
learns VAD characteristics from labeled VADs in 2019 and 
then makes predictions without expert inputs, as is typical 
in similar studies.

Human-in-the-Loop Machine Learning 
(VADecide)

We created a workflow for VADecide (Figure 1) to identify/
label example VAD properties. Steps 4 through 6 specifically 
distinguish a human-in-the-loop approach from a simple ML 
model and from the city’s current workflow (see detailed dis-
cussion of how the three approaches diverge in each step in 
Supplementary Material Section B).

Issue Articulation

To identify whether and where ML interventions help the 
decision-making process, we first sent a Q&A document 
(Supplementary Material Section C) to the HNSD experts 

asking them to document the process of property regenera-
tion from an administrative perspective. They reported that 
this process involves collecting data, identifying VAD candi-
dates, determining acquisition strategies, acquiring proper-
ties, and regenerating the properties for various purposes. We 
next worked with the team at their offices in Savannah and 
online to codify how they decide to label a parcel. To help 
communicate these processes, we collaboratively created an 
infographic with the team (Supplementary Material Section 
D); this graphic shows that the biggest challenge is managing 
decentralized data that flows between institutions and lever-
aging the data for effective decision-making. By unveiling 
the decision process behind VAD property identification and 
acquisition, we realized that ML can help identify VAD can-
didates but is less successful at matching VAD candidates to 
acquisition strategies (e.g., tax sales, public nuisance, emi-
nent domain), as this process requires contextual knowledge 
that is difficult to codify into data (e.g., some neighborhoods 
are more receptive to certain strategies). Thus, we narrowed 
the goal of the ML intervention as VAD identification.

Data Collection and Feature Selection
We created maps of Savannah symbolized by variables 
listed in Table 1 and examined them in person with the 
experts to decide on filtering criteria for model input data. 
This discussion found 5,372 residential structures (single-
family, 2-4 family, and townhouse) and lands that have 
records in drug crime, tax issues, code violations, or fire 
incidents (required by Savannah city law for government 
property acquisition) and have little or no flood risk (which 

Figure 1. Human-in-the-loop machine learning (HILML) workflow used to create VADecide. The symbols represent various human-
centered data practices we implemented in each step.
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was a priority of HNSD). While the expert workflow uses 
tax, code, and crime data as decision input, the ML models 
take in many variables and report an importance score for 
each. We experimented with fifteen variables, including 
building attributes (such as land size, number of bedrooms) 
and market indicators (such as number of unqualified sales) 
(see Supplementary Material Section A for all variables), 
but only kept a minimal list (see Table 1) that combines 
planners’ recommendations and model suggestions for final 
prediction (Steps 2 and 3 in Figure 1).

VAD Properties Sampling and Labeling

Since Savannah does not have a database with properties 
labeled as VAD, we used a mixture of random sampling and 
active learning techniques (uncertainty and diversity sam-
pling) to create training samples (i.e., which property can be 
a VAD candidate). Uncertainty sampling selects data points 
that are close to decision boundaries and thus have the high-
est uncertainty (Lewis and Catlett 1994), while diversity 
sampling ensures the geographic and representation diversity 
in samples (Monarch 2021) (see Supplementary Material 
Section E for technical details) (Step 4 in Figure 1).

After sampling, we asked a team of four housing experts 
to classify a subset of properties (n = 300) as VAD or not; 
this serves as a dependent variable for the model’s training 
data (Step 5 in Figure 1). The experts were two males and 
two females ranging in age from their thirties to sixty-five. 
They have experience in the field of land and housing for 
twenty-five years, fifteen years, twelve years, and three years 
and have been working for the City of Savannah for eight 
years, three years (x2), and two years. They had no prior 
experience in ML or in labeling training data.

We sent each expert a spreadsheet of properties and their 
characteristics (see Supplementary Material Section E). In 
the spreadsheet, each column is a parcel, and each row is a 
parcel attribute. The experts could choose labels (i.e., VAD 
and Not VAD) from a dropdown menu in the spreadsheet and 
write comments to clarify how they made the decisions. One 
expert labeled 150 samples, and the others labeled fifty sam-
ples each.

After labeling the training data, we asked experts via 
e-mail to discuss labels that either conflicted with their pro-
fessional knowledge or were deemed as highly uncertain by 
the ML algorithm (see Supplementary Material Section E) 
(Step 6 in Figure 1). We found that properties with very simi-
lar conditions were labeled differently, presenting opportuni-
ties to highlight implicit assumptions in the labeling process 
and to streamline the method to ensure equity across the pro-
cess. To find these properties, we fitted decision trees to 
labeled data of parcels with and without structures, respec-
tively, and visualized how the model made decisions for each 
type. For example, if a VAD property encountered multiple 
splits in the decision tree and was separated from a large 
group of non-VAD properties, then it was a good candidate 

for discussion (see Supplementary Material Section D for 
visualization). When experts labeled a property differently, 
we presented the decision trees and the labeled samples, and 
the experts collaboratively agreed upon a resolution. This 
process helped expose nuances in the interactions of vari-
ables, differentiate whether false labels were due to low sam-
ple points or human error, and uncover tacit variables being 
used in the reasoning.

HITLML Model Training, Interpretation, and 
Prediction

To create VADecide, we used a random forest algorithm to 
classify properties into VAD and not VAD properties (Step 7 
in Figure 1). The random forest model captures nonlinear 
relationships between variables by creating a “forest” of 
decision trees in which each tree decides on a sequence of 
variables and variable values to split the data to minimize 
label differences in each branch (Liaw and Wiener 2002). We 
chose a random forest model because it has higher model 
accuracy than logistic regression and because VAD status 
depends on a combination of variables (e.g., crime with tax 
delinquency); random forest can capture such feature inter-
actions and is “smart” enough to pick between correlated 
variables (Basu et al. 2018) (see Supplementary Material 
Section E).

We used drop-column feature importance and partial 
dependence plots to experiment with different model set-
tings, including different feature combinations and different 
numbers of training samples (see Supplementary Material 
Section E). In the end, our final HITLML model is trained on 
300 samples (Land n = 105; Structure n = 195) with seven 
features (see Table 1).

Model Evaluation and Validation

We compared the VADecide-predicted VADs with ML- 
predicted VADs and VADs identified by the city’s current 
workflow through five metrics (Step 8 in Figure 1).

Input refers to the number of VADs surveyed by the city 
or trained in the ML model and VADecide. A higher value 
means that more data collection is needed to be collected to 
make inference.

Output refers to the number of VADs found by the city or 
predicted by the ML model and VADecide. A higher value 
means that the process returned more VAD candidates.

Internal accuracy (ML and VADecide only) refers to 
the prediction accuracy trained with 80 percent of labeled 
VAD properties and validated with the remaining 20 per-
cent (reserved from labeled VAD dataset, i.e., test sets). We 
used cross-validation and out-of-bag scores, two standard 
metrics in ML to measure the accuracy (see Supplementary 
Material Section F for Out-of-Bag (OOB) score results and 
technical explanations). A higher value indicates better pre-
diction accuracy.
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The external consensus rate refers to the percentage of 
properties that are also VAD candidates in other sources (i.e., 
the field survey and USPS vacancy data); a higher consensus 
rate indicates more reliable predictions. A higher value 
means more reliable prediction. Both field survey and USPS 
data are not perfect representations of the locations of VAD 
properties; the ideal “ground-truth” would be VAD proper-
ties that were identified and acquired in the past, but this 
population is too small and not diverse in our case study site.

Content sensitivity refers to the percentages of VAD 
properties dominated by different features. We focused on 
crime, code violation, tax delinquency, and low property 
values as VAD types because they are important features 
for predicting VADs in our random forest model (see 
Supplementary Material Section F for details on how we 
determine types). A higher value means that a method is 
less robust and is likely to retrieve VAD candidates based 
on a single variable.

Results

Comparison Between VADecide, Simple ML, and 
the City’s Current Workflow

Considering input-output, VADecide is the most efficient 
among the three, followed by the ML model and then the 
city’s current workflow. VADecide identified 1,309 VAD 
properties among 5,372 candidates, using only three hun-
dred carefully selected expert-labeled samples. In con-
trast, the field survey from the city’s current workflow 
contains 890 effective samples and identifies only 192 as 
VAD candidates.

Next, both the VADecide and the simple ML model have 
high internal (prediction) accuracy. The minimum accuracy 
is VADecide’s prediction on structures (88%) and the maxi-
mum is ML’s prediction on structures (93%).

Regarding consensus rates, VADecide exceeds those pro-
duced by the ML and the city’s typical workflow. For exam-
ple, VADecide’s predictions overlap with 60.49 percent VAD 
land and 63.96 percent VAD structures reported in the field 
survey and 66.67 percent VAD land and 34.61 percent VAD 
structures found in the USPS vacancy data. Since neither 
source represents the ground-truth status of VADs, the accu-
racy for VADecide may be even higher. The range of consen-
sus rates for VADecide (34.61%–66.67%) is also much 
higher than the range in the ML model (14.81%–22.52%), 
indicating that the human-in-the-loop approach is more reli-
able, while the ML model performance may be biased by 
using a single variable (i.e., code violations) to label VAD 
samples. VADecide also outperforms the city’s current work-
flow (range, 26.15%–48%).

The three methods also exhibit distinct distributions of 
predominant VAD features, indicating that they have varying 
degrees of content sensitivity. This divergence implies that 
certain VAD characteristics exert greater influence (or bias) 

than others. For instance, both the VADecide and the ML 
model predict more VAD properties with high crime and tax 
delinquency records, whereas the city’s current workflow 
identifies more properties with low property values. The 
VADecide-predicted VADs also have fewer code violations 
than those identified by the city. These discrepancies may be 
caused by differences in the human-versus-machine identi-
fication process. In the city’s current workflow, planning 
experts use low-income neighborhood location and low prop-
erty value as heuristics for identifying easy-to-acquire VAD 
candidates. During field surveys, they are also more likely to 
rely on visual cues, such as dilapidated roofs and broken win-
dows, which tend to be associated with code violations. The 
simple ML model predicted that VADs have higher rates of 
code violations than those detected from the city’s current 
workflow and from VADecide. This reveals that using one 
VAD feature (in this case, number of code violations) as train-
ing properties’ VAD labels may cause the ML model predic-
tions to overrepresent properties with this feature. In contrast, 
VADecide’s results show that the percentage of identified 
VADs with various features (e.g., crime, code violations, tax 
delinquency, low properties values) falls between the percent-
ages reported by the ML model and the city’s current work-
flow, indicating that they may be a “happy medium” between 
the techniques (Table 2). In comparison to VADs retrieved 
from the city’s workflow, VADecide-predicted VADs are 
spread more widely across neighborhoods and are distributed 
more evenly across land and structure parcel types (see  
Figure 2). This outcome may be the result of the city’s neigh-
borhood visitation constraints, as field surveys cover a lim-
ited set of (low income) neighborhoods, while VADecide was 
trained with geographically diverse samples. The wider dis-
tribution of VADecide-predicted VADs mitigates human bias 
in associating VADs with marginalized communities. VADs 
predicted by the ML model are also distributed across more 
neighborhoods than those retrieved when using the city’s 
workflow (see Figure 2). Yet, the ML model’s predicted prop-
erties are concentrated around neighborhoods with available 
code violation data (see Supplementary Material Section G). 
For reference, USPS vacancy data have the widest geographic 
spread, but these data are biased toward vacant structures 
because structureless properties rarely receive mail.

Reflection

We met with HNSD staff and shared a table that outlined 
limitations and notes for each feature in the data collection 
and processing steps (see Supplementary Material Section 
G) (Step 9 in Figure 1). Together, we reflected on possible 
issues with interpretation, generalizability, and suggestions 
for improving data source quality. For example, in this post 
hoc examination, we noticed a lack of code cases from 311 
calls (a civic hotline in Savannah and a key source of code 
violation data for the city) in certain neighborhoods. Using 
linear regression, we subsequently found that neighborhoods 
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with lower household income and higher percentage of 
African American population correlate with few 311 calls. 
We subsequently discussed possible ways to encourage more 
311 calls from these neighborhoods (see Supplementary 
Material Section G).

Discussion and Conclusion

This article presented a HITLML approach (VADecide) that 
predicts VAD properties in Savannah, Georgia. We found 
that VADecide-predicted VADs not only have comparable 
accuracy to the classic ML model but are also more reliable 
than outcomes from both the ML model and the city’s cur-
rent workflow. We also discovered differences in what 
VADecide and HNSD (human experts) would classify as 
VAD: VADecide identifies more properties that are tax 
delinquent, prone to crime, and in neighborhoods with vari-
ous income levels, while human experts often rely on visual 

cues from code violations and low property value data. 
VADecide’s predictions also covered a wider range of neigh-
borhoods beyond the scope of human experts’ field survey.

However, our study also has some limitations. First, our 
model focuses on challenges from the institutional perspec-
tive rather than the challenges of the property owners. As 
such, we did not incorporate the voices of community mem-
bers, renters, and property owners, which reinforces a trans-
active, normative mode of governance (where denizens are 
consumers of public services) rather than a relational mode 
(where denizens are co-creators). Despite the benefits of 
integrating expert knowledge into the workflow, the human-
in-the-loop approach has been criticized as a method that 
simply uses people as labor to generate and calibrate data 
(Janowicz, Sieber, and Crampton 2022). Second, involving 
housing experts to contextualize the selection of variables, 
build training data, adapt the model, and validate the model 
outcomes is costly. Model accuracy also requires constant 

Table 2. Comparison of City’s Current Workflow, ML Model, and VADecide.

Metrics Interpretation

City’s workflow ML model VADecide

Land Structure Land Structure Land Structure

Input Total VADs surveyed in the city’s current 
workflow or used to train the ML model or 
VADecide.

Higher values indicate that more records are 
needed to make an inference.

483 407 183 353 105 195

Output Total VADs identified in the city’s current 
workflow or that were predicted by ML model 
or VADecide.

Higher values mean that more VADs are identified.

81 111 96 281 472 837

Internal accuracy Percent of ML-predicted VADs (trained with 80% 
labeled VADs) that are also labeled as VAD in 
the test set (20% of labeled VADs not used 
for ML training). Higher values mean better 
prediction accuracy.

NA NA 90.72% 92.95% 93.33% 87.69%

External consensus Percent of VADs identified/predicted that are also 
found in the city’s field surveys (CV score)

NA NA 14.81% 22.52% 60.49% 63.96%

 Percent of VAD candidates identified/predicted 
that are also found in the USPS vacancy dataset 
(CV score)

Higher value in either indicates a more reliable 
prediction output.

48% 26.15% 16.67% 17.67% 66.67% 34.61%

Content sensitivity Percent of identified VADs with crime 7.4% 22.3% 9.4% 30.6% 8.3% 46.5%
 Percent of identified VADs with code violations 34.6% 42.7% 82.3% 63% 29% 30.5%
 Percent of identified VADs with tax delinquency 75.3% 83.5% 100% 86.5% 99.8% 98.2%
 Percent of identified VADs with low property 

value
Higher values mean that a higher percentage of 

VADs have these features and thus a particular 
method is less robust and is likely to depend on 
one data source versus others

96.3% 83.5% 86.5% 71.9% 90.3% 68.2%

Note: CV refers to cross-validation accuracy (see Supplementary Material Section F for further explanation). USPS refers to vacancy records compiled 
by USPS staff. NA values are present because the data collected using the city’s current workflow (i.e., field surveys) could only be compared with USPS 
data, and do not run through the ML learning process.
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data updates, which is a common struggle in many smart 
city initiatives (Kitchin 2014). Finally, our model only iden-
tifies candidates based on VAD characteristics, but does not 
suggest how the government should proceed in managing 
the property. Acquisition in Savannah, and many other cit-
ies, is subject to political (e.g., minority communities’ con-
cerns with eminent domain) and financial factors (e.g., 
case-by-case acquisition costs and benefits).3 The extra 
properties identified by VADecide present opportunities for 

early rehabilitation and intervention before these properties 
become uninhabitable. Future studies can investigate whe-
ther ML-identified VAD candidates are better for various 
acquisition strategies (e.g., tax sale, nuisance abatement, 
eminent domain, arms-length transaction) or regeneration 
options (e.g., as affordable housing, green space, rehabilita-
tion), as compared with sites identified through fieldwork 
(see Figure S1 in Supplementary Appendix for the city’s 
property regeneration workflow).

Figure 2. Geographic distribution of identified/predicted VADs in city’s current workflow, ML model, and VADecide. USPS vacant 
properties are mapped as an external validation.
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We recommend the human-in-the-loop model for munici-
pal governments that lack an unbiased, large-scale VAD data-
set for machine training, are ready to maintain and upgrade 
their digital infrastructures, and seek an alternative approach 
to evaluate their existing workflow. For cities without a con-
sistent definition and acquisition of VAD properties, the 
HITLML model is beneficial as it requires only a small train-
ing sample to generate standardized, accurate, reliable, and 
robust predictions. The intentional process for human experts 
to define, deliberate, and dialogue with the HITLML model 
can also be enlightening and trust-building, even if it is a one-
off practice. For instance, Savannah planners found the sam-
ple labeling process helpful in organizing their thoughts, 
making decisions, and reflecting on why they chose certain 
outcomes for the parcels. Two experts expressed increased 
confidence and knowledge about deploying the model in 
future operations. One expert also mentioned that interpreting 
the differences between human and machine-predicted out-
comes made them rethink hidden assumptions in their current 
workflow.

The main barriers to consistently deploying the HITLML 
model in practice include technical and labor costs in main-
tenance. Critical digital infrastructures may include a central 
database of all VAD-relevant variables, often collected by 
separate civic departments, cloud resources to deploy the 
model, a visualization platform to overlay parcel details and 
predictions on the map, and an interface that allows humans 
to validate the predictions. Local governments may also need 
to consider the labor cost of hosting training workshops for 
staff to understand, recalibrate, and use the model and its out-
comes, and develop guidelines for auditing and communicat-
ing results with community members. These challenges have 
also prevented the City of Savannah from adopting our 
HITLML model for the long term.

In conclusion, this research describes a HITLML approach 
for classifying land and residential structures as potentially 
in need of attention. By using a collaborative technique that 
engages experts while using large datasets and statistical 
analysis, we generated new insights into how to potentially 
automate or improve the local government’s ability to iden-
tify VAD properties. The result is a more reliable method for 
managing assets in a municipal setting. We suggest that more 
researchers and practitioners collaborate and incorporate 
human input and expertise as they develop and test their ML 
applications.
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